
rdfox_runner
Release 0.1.0

Rick Lupton

Aug 02, 2023

CONTENTS:

1 Installing rdfox_runner 1

2 Running basic RDFox scripts 3

3 Running RDFox and interacting with the endpoint 5

4 API Reference 7
4.1 RDFox endpoint . 7
4.2 RDFox runner . 8
4.3 Generic command runner . 9

5 Indices and tables 11

Index 13

i

ii

CHAPTER

ONE

INSTALLING RDFOX_RUNNER

Install rdfox_runner using pip:

pip install rdfox_runner

Of course, you will also need a copy of RDFox.

1

https://www.oxfordsemantic.tech/product

rdfox_runner, Release 0.1.0

2 Chapter 1. Installing rdfox_runner

CHAPTER

TWO

RUNNING BASIC RDFOX SCRIPTS

The simplest way to use rdfox_runner goes like this:

• Set up a temporary directory with the required input files, scripts, rules etc.

• Run RDFox sandbox in that directory

• RDFox produces some output files

• The contents of the output files is captured and returned

For example, if we have some RDF triples in facts.ttl, and a query to answer in query.rq, we can get the answer to the
query like this:

input_files {
"facts.ttl": "path/to/facts.ttl",
"query.rq": "path/to/query.rq",

}
script = [

'dstore create default type par-complex-nn',
'import facts.ttl',
'set query.answer-format "text/csv"',
'set output "output.csv"',
'answer query.rq',

]
with RDFoxRunner(input_files, script) as rdfox:

result = rdfox.files("output.csv").read_text()

Alternatively, you can start RDFox running and then interact with its REST API; see Running RDFox and interacting
with the endpoint.

3

rdfox_runner, Release 0.1.0

4 Chapter 2. Running basic RDFox scripts

CHAPTER

THREE

RUNNING RDFOX AND INTERACTING WITH THE ENDPOINT

If you want to run multiple queries or interact with RDFox while it is running, you can start the RDFox REST endpoint.

For example, if we have some RDF triples in facts.ttl, we can answer queries like this:

input_files {
"facts.ttl": "path/to/facts.ttl",

}
script = [

'dstore create default type par-complex-nn',
'import facts.ttl',
'endpoint start',

]
with RDFoxRunner(input_files, script) as rdfox:

result = rdfox.query(sparql_query)

See the rdfox_runner.RDFoxEndpoint API documentation for details of the query methods.

5

rdfox_runner, Release 0.1.0

6 Chapter 3. Running RDFox and interacting with the endpoint

CHAPTER

FOUR

API REFERENCE

4.1 RDFox endpoint

The rdfox_runner.RDFoxEndpoint class helps to interface with a running RDFox endpoint.

class rdfox_runner.RDFoxEndpoint(namespaces: Optional[Mapping] = None)
Interface to interact with a running RDFox endpoint.

Parameters namespaces – dict of RDFlib namespaces to bind

add_triples(triples)
Add triples to the RDF data store.

In principle this should work via the rdflib SPARQLUpdateStore, but RDFox does not accept data in that
format.

Note: compatible with RDFox version 5.0 and later.

connect(url: str)
Connect to RDFox at given base URL.

The SPARQL endpoint is at {url}/datastores/default/sparql.

facts(format='text/turtle')→ str
Fetch all facts from the server.

Parameters format – format for results send in Accept header.

query(query_object, *args, **kwargs)
Query the SPARQL endpoint.

This method is a simple wrapper about rdflib.Graph.query() which shows more useful error out-
put when there is a problem with the query.

Raises ParsingError

query_dataframe(query_object, n3=True, *args, **kwargs)
Query the SPARQL endpoint, returning a pandas DataFrame.

Because this is often useful for human-readable output, the default is to serialise results in N3 notation,
using defined prefixes.

See query().

Parameters n3 – whether to return results in N3 notation, defaults to True.

query_one_record(query_object, *args, **kwargs)→ Dict[str, Any]
Query the SPARQL endpoint, and check that only one result is returned (as a dict).

See query().

7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html#rdflib.Graph.query
https://docs.python.org/3/library/stdtypes.html#str

rdfox_runner, Release 0.1.0

query_raw(query, answer_format=None)
Query the RDFox SPARQL endpoint directly.

Unlike query, the result is the raw response from RDFox, not an rdflib Result object.

Raises ParsingError

query_records(query_object, n3=False, *args, **kwargs)→ List[Dict[str, Any]]
Query the SPARQL endpoint, returning a list of dicts.

See query().

Parameters n3 – whether to return results in N3 notation, defaults to False.

4.2 RDFox runner

The rdfox_runner.RDFoxRunner class handles starting and stopping an RDFox instance with a specified set of
input files and a script to run. It derives from rdfox_runner.RDFoxEndpoint so the same query methods can
be used once it is running.

class rdfox_runner.RDFoxRunner(input_files: Mapping[str, Union[str, pathlib.Path, TextIO]],
script: Union[List[str], str], namespaces: Optional[Mapping]
= None, wait: Optional[str] = None, working_dir: Op-
tional[Union[str, pathlib.Path]] = None, rdfox_executable:
Optional[Union[str, pathlib.Path]] = None, endpoint: Op-
tional[rdfox_runner.rdfox_endpoint.RDFoxEndpoint] = None)

Bases: object

Context manager to run RDFox in a temporary directory.

Parameters

• input_files – mapping of files {target path: source file} to set up in temporary working
directory.

• script – RDFox commands to run, either as a list of strings or a single string.

• namespaces – dict of RDFlib namespaces to bind

• wait – whether to wait for RDFox to start the endpoint or exit when starting. If None, look
for the presence of an “endpoint start” command in script and wait for the endpoint if found,
wait for exit otherwise.

• working_dir – Path to setup command in, defaults to a temporary directory

• rdfox_executable – Path RDFox executable (default “RDFox”)

• endpoint – RDFoxEndpoint instance to use (default None, meaning use the built in class).
This can be used to customise the endpoint interface.

When used as a context manager, the RDFoxRunner instance returns endpoint for running queries etc. For more
control a custom RDFoxEndpoint can be passed in. When the RDFox endpoint is started, the connect() method
on the endpoint will be called with the connection string. The endpoint is available at the attribute endpoint.

files(path)→ pathlib.Path
Return path to temporary directory.

Parameters path – path relative to the working directory

raise_for_errors()
Raise an exception if RDFox has reported an error.

8 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/pathlib.html#pathlib.Path

rdfox_runner, Release 0.1.0

“Critical” errors are reported. If the error policy is set to “stop”, then errors that caused RDFox to stop are
also reported.

send_quit()
Send “quit” command to RDFox.

start()
Start RDFox.

Parameters wait_secs – how many seconds to wait for RDFox to start.

stop()
Stop RDFox.

4.3 Generic command runner

The rdfox_runner.CommandRunner class is the building block for rdfox_runner, which handles setting up a
temporary working directory and running a given command within it.

For example:

from io import StringIO
import time

input_files = {
"a.txt": StringIO("hello world"),

}

The -u is important for unbuffered output
command = ["python", "-u", "-m", "http.server", "8008"]

with CommandRunner(input_files, command):
time.sleep(0.1)
response = requests.get("http://localhost:8008/a.txt")

assert response.text == "hello world"

class rdfox_runner.CommandRunner(input_files: Optional[Mapping[str, Union[str, pathlib.Path,
TextIO]]] = None, command: Optional[Union[List, str,
Callable]] = None, shell: bool = False, wait_before_enter:
bool = False, wait_before_exit: bool = False, timeout: Op-
tional[float] = None, working_dir: Optional[Union[str, path-
lib.Path]] = None, output_callback: Optional[Callable] =
None)

Run a command in a temporary directory.

This can be used as a context manager, ensuring the temporary directory is cleaned up and the subprocess is
stopped when finished with.

Parameters

• input_files – mapping with keys being the target path and value the source path.

• command – command to run, as passed to subprocess.Popen

• shell – whether to run command within shell

• wait_before_enter – whether to wait for command to complete before continuing
with context manager body.

4.3. Generic command runner 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/subprocess.html#subprocess.Popen

rdfox_runner, Release 0.1.0

• wait_before_exit – whether to wait for command to complete by itself before termi-
nating it, when leaving context manager body.

• timeout – timeout if wait is true.

• working_dir – Path to setup command in, defaults to a temporary directory

• output_callback – Callback on output from command.

The values in input_files can be:

• a pathlib.Path or string – interpreted as a path to a file to copy

• a file-like object – read to provide the content for the temporary file. This can be a io.StringIO
object if you would like to provide a constant value

cleanup_files()
Cleanup temporary working directory, if needed.

The directory is only removed if it was newly created, not if it was passed in as working_dir.

files(path)→ pathlib.Path
Return path to temporary directory.

Parameters path – path relative to the working directory

setup_files()
Setup the files ready to run the command.

If working_dir has been specified, it is created if it does not exist. Otherwise, a new temporary direc-
tory is created.

The files listed in input_files are copied into the working directory.

start()
Setup files and start the command running.

This is a convenience method to run setup_files() and start_subprocess() together, as
needed.

start_subprocess()
Start the subprocess running.

If wait is true, wait for up to timeout seconds before continuing.

stop()
Stop the command and clean up files.

This is a convenience method to run stop_subprocess() and cleanup_files() together, as
needed.

Raises subprocess.CalledProcessError – if the subprocess returns an error exit code.

stop_subprocess()
Stop the subprocess.

wait()
Wait for subprocess to exit.

Waits up to timeout seconds.

10 Chapter 4. API Reference

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/io.html#io.StringIO
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

11

rdfox_runner, Release 0.1.0

12 Chapter 5. Indices and tables

INDEX

A
add_triples() (rdfox_runner.RDFoxEndpoint

method), 7

C
cleanup_files() (rdfox_runner.CommandRunner

method), 10
CommandRunner (class in rdfox_runner), 9
connect() (rdfox_runner.RDFoxEndpoint method), 7

F
facts() (rdfox_runner.RDFoxEndpoint method), 7
files() (rdfox_runner.CommandRunner method), 10
files() (rdfox_runner.RDFoxRunner method), 8

Q
query() (rdfox_runner.RDFoxEndpoint method), 7
query_dataframe() (rdfox_runner.RDFoxEndpoint

method), 7
query_one_record() (rd-

fox_runner.RDFoxEndpoint method), 7
query_raw() (rdfox_runner.RDFoxEndpoint method),

7
query_records() (rdfox_runner.RDFoxEndpoint

method), 8

R
raise_for_errors() (rdfox_runner.RDFoxRunner

method), 8
RDFoxEndpoint (class in rdfox_runner), 7
RDFoxRunner (class in rdfox_runner), 8

S
send_quit() (rdfox_runner.RDFoxRunner method), 9
setup_files() (rdfox_runner.CommandRunner

method), 10
start() (rdfox_runner.CommandRunner method), 10
start() (rdfox_runner.RDFoxRunner method), 9
start_subprocess() (rd-

fox_runner.CommandRunner method), 10
stop() (rdfox_runner.CommandRunner method), 10

stop() (rdfox_runner.RDFoxRunner method), 9
stop_subprocess() (rd-

fox_runner.CommandRunner method), 10

W
wait() (rdfox_runner.CommandRunner method), 10

13

	Installing rdfox_runner
	Running basic RDFox scripts
	Running RDFox and interacting with the endpoint
	API Reference
	RDFox endpoint
	RDFox runner
	Generic command runner

	Indices and tables
	Index

